Jerry Kaplan:坚信人工智能会让未来更加光明
机器学习背后是一系列的应用,包括软件的技术,包括选择各种不同的使用模式,案例,包括大量的事例来提取模式。对同一领域的数据进行收集,如果这个体量足够大了,让你能够找到一些模式,但是你能够充分地利用那些模式,来进行数据的预测或者说是归类,特别是对于同一领域的新数据的事例进行预测或者分类,因此在另外一方面,机器学习也是一个非常好的例子,对于你的未见的未来进行更好的预测,假设,机器学习的程序是用来识别图像,识别对象,而图像包括我们之前的讲者也提到的,在这里有不同的猫猫狗狗的照片,它能够找到其中的相关性,这个相关性也许是任何一样东西和股价的相关性,他找到这个相关性之后能够用来做股票,包括证券的销售等等。 大家是这方面的专家,大家知道了逻辑推理和机器学习是两种不同的人工智能领域,不同的两条路,但是又有一个问题出现了,逻辑推理为什么在过去的几十年里如此风靡全球,相应而言,当下,现在,机器学习变得大行其道呢?如果要说它背后简单的答案,也许是有不同的存储、网络、计算,数据正在发生深远的变革。他们所变化的这个体量不是一点点,也不是许多,我想说这个词,是一个巨大的天量的海量的变化,而这样的变化也是让我们的可能变得有更多的无限的可能。在回顾过去的几十年的发展,在速度和内存上面差不多每一年半,它的能力就能翻一番,这意味着当下的计算机,现在差不多它现在的能力,应该说是在过去的三十年里,应该是翻了二十多倍,那我想这应该是如果看到他的指数,是 2 的 20 次方,产生的体量应该是超过 1 百万了,因此甚至超越了我们直觉的分析和知识,来理解这巨大的海量,一百万代表的是速度方面,就是我们一个蜗牛的步行的速度和一个航天飞机,如果把它放到同一个阶数下面,他们的差别是多少?50 万。 如果再看苹果手表,苹果手表它的计算能力和传统的美国完整的空间项目,这是最早的,比 1965 年登月时候的计算能力要大得多,同样发生变化的也包括数位化的数据,所发生的体量也是海量巨大的。这为什么改变了整个人工智能的发展方向和方法呢?首先第一种方法,人工智能当中的推理法,他只要少量的数据就能够完成很多的工作,只要输入端很少的事实,能够有很好的推理和演绎,得出很多有用的用户案例,而这对于我们现存的技术,特别是对于 20、30年当时现成的技术而言,这种法以无是有效的。对比一下,30 年之前,计算机,或者说机器学习的算法还缺少数据,就算你有这部分的数据,它背后的存储处理能力,在当时也是会限制你能够发展的方向和速度。因此,再回到 20、30 年之前,这是为什么逻辑推算是主导。 而在那个时候,人们并不非常关心机器学习,随着时间的推移,情况发生了逆转。机器学习它能够带来的是非常混乱的,非结构化的真实世界当中的问题,因为数据量变得大了很多。他需要大量的计算能力,需要很强的云存储能力,而且需要更大量的数据,数据越多,结果越好,越准,因此,机器学习是一个非常非常好的一种匹配,特别是在一个数据密度非常高的世界当中,而且是当我们即将进入到 5G 的万物互联的时代。这也是发展到现在,我也给大家介绍了人工智能的发展史。 (编辑:成都站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |